The study by Taylor, Woodhouse, and Feasey outlines a systematic approach to ESD failure analysis. This approach involves several steps to ensure accurate identification of failure sites:
1. Initial Examination
Components suspected of ESD damage are first examined visually and electrically tested. Automatic test equipment is used to perform full parametric measurements and functional checks to determine any deviations from expected performance.
2. Curve Tracing
A curve tracer helps predict the location of potential ESD failure sites by examining the voltage-current (Z/V) characteristics of the IC pins. This technique can identify areas where the ESD transient may have caused damage.
3. Decapsulation and Microscopy
To expose the IC die, decapsulation procedures are used. The exposed die is then examined using optical and scanning electron microscopy (SEM) to locate physical damage. However, damage sites often hidden beneath metal or polysilicon layers may require further analysis.
4. Controlled ESD Stress Testing
Identical, undamaged components are subjected to controlled human-body-model (HBM) ESD testing to replicate damage conditions. This helps correlate field failures with laboratory-induced failures, providing insights into the damage mechanisms.
5. Chemical Etching
When visual evidence is insufficient, chemical etching techniques can reveal the extent of ESD-induced damage at the silicon level. This step is crucial for understanding the mechanisms behind junction shorts and other forms of ESD damage.
6. Thermal Imaging and EBIC
Techniques like liquid crystal thermal imaging and electron beam-induced current (EBIC) imaging help detect ‘hot spots’ and leakage currents, respectively, which indicate areas of ESD damage.